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Abstract—In this paper, we consider resource allocation for an
outdoor-to-indoor shared user-equipment (UE)-side distributed
antenna system (SUDAS) employing multiple independently op-
erating compress-and-forward (CF) relays which utilize both
licensed and unlicensed frequency bands to enhance indoor
data throughput. First, a non-convex matrix-valued resource
allocation problem for maximization of the weighted sum rate
is formulated. Next, the non-convex problem is simplified to
obtain a low-complexity suboptimal resource allocation algo-
rithm based on sequential quadratic programming (SQP). The
proposed algorithm is shown to provide excellent performance
in practical scenarios. Furthermore, the algorithm has a low
channel state information (CSI) feedback requirement and can
accommodate arbitrary communication bands and technologies
for indoor relaying. Therefore, the proposed CF-SUDAS scheme
can help achieve high outdoor-to-indoor data throughput at low
complexity, a crucial requirement for next generation wireless
communication systems.

I. INTRODUCTION

Outdoor-to-indoor communication is an important require-
ment for the next generation communication systems, such
as those based on the upcoming 5th generation (5G) com-
munication standard, owing to the increasing indoor usage of
mobile video and multimedia applications [1]. A promising
technique for improving the outdoor-to-indoor data throughput
is spatial multiplexing enabled by multiple-input multiple-
output (MIMO) systems. However, in practice, the spatial
multiplexing gain is limited due to the low number of antennas
that can be accommodated at mobile devices. To overcome this
limitation while still enjoying the benefits of MIMO, the use of
virtual antenna arrays (VAAs) [2] has been proposed. VAAs
consist of adjacent single-antenna receivers which realize a
virtual MIMO system by exchanging received signals, thereby
emulating multi-antenna reception.

On the other hand, base station (BS) side distributed antenna
systems (DASs) are relays which aid transmission of signals
from a BS baseband unit to user equipments (UEs). DAS based
schemes have been investigated to mitigate shadowing and
penetration losses in indoor and outdoor-to-indoor communi-
cation scenarios [3], [4]. Furthermore, optimal resource allo-
cation algorithms for DASs [5] and the system performance
with imperfect channel state information (CSI) [6] have been
studied. Traditionally, a BS baseband unit is connected to a
DAS using a wired connection such as optical fibre or cable

[4]. However, more recently, wired and wireless connections
from BS baseband units to DASs have been investigated in
the context of cloud radio access networks (C-RANs) [7], [8].

Similar to a conventional BS-side DAS, a UE-side DAS con-
sists of relays, operating as a dedicated VAA, which forward
the signals received from a BS to the UEs. Therefore, UE-
side DAS achieves the virtual MIMO gain in single antenna
UEs without the need for UE cooperation. However, such a
system necessitates the use of wireless resources for both the
BS-relay and relay-UE links. Therefore, the gains of UE-side
DASs are limited by the system bandwidth which is a scarce
resource in the licensed frequency bands.

The shared UE-side distributed antenna system (SUDAS)
proposed in [9] overcomes this limitation by using a second
unlicensed frequency band for indoor relaying. The availability
of a large unlicensed band of about 7 GHz around 60 GHz,
and the applicability of millimetre wave (mmWave) to short
distance indoor communication provides the necessary band-
width and technology to relay signals from a DAS to the UEs.
In SUDAS, multiple shared indoor relays receive a MIMO
signal from an outdoor BS and forward it, after amplification
and frequency translation, over orthogonal mmWave frequency
bands to indoor UEs. Hence, SUDAS converts the high out-
door spatial multiplexing gain obtained by virtual MIMO to a
high indoor frequency multiplexing gain, effectively utilizing
the large bandwidth in the unlicensed band to achieve a high
system throughput.

However, the baseline SUDAS scheme described in [9] suf-
fers from several practical problems. First, the scheme requires
joint processing of the signals received at all relays, which is
not practical because of the need for high speed interconnects
between the relays. Second, resource allocation for this system
requires channel state information (CSI) feedback for both the
BS-relay and the relay-UE channels, i.e., twice the amount
of feedback of conventional MIMO systems. Third, the use
of amplify-and-forward (AF) relays in [9] limits flexibility in
mmWave bandwidth usage.

In this paper, we address the shortcomings of the baseline
SUDAS scheme by considering SUDAS with independently
operating compress-and-forward (CF) relays. The contribu-
tions of this paper can be summarized as follows.
• We present a SUDAS scheme with independently oper-
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Fig. 1. The upper half of the figure shows the CF-SUDAS model.
M single-antenna CF relays aid communication from an outdoor BS
to K single-antenna indoor UEs. The lower half of the figure shows
the time division multiple access (TDMA) protocol used for indoor
relay-UE communication.

ating CF relays for high throughput outdoor-to-indoor
communication. The scheme has a low CSI feedback
requirement, owing to independent resource allocation on
the BS-relay and relay-UE links, and offers flexibility
with respect to indoor bandwidth usage.

• We formulate a non-convex resource allocation prob-
lem for weighted sum-rate maximization and propose a
low-complexity suboptimal resource allocation algorithm
based on sequential quadratic programming (SQP).

• We study the convergence of the resource allocation
algorithm based on computer simulations, and compare
its performance with that of the baseline SUDAS scheme
[9].

The remainder of this paper is organized as follows. In
Section II, we present the system and signal model for the
proposed CF-SUDAS. In Section III, we formulate the non-
convex resource allocation problem for weighted sum-rate
maximization. In Section IV, we solve the resource allocation
problem and develop a low-complexity, suboptimal resource
allocation algorithm. The performance of the proposed algo-
rithm is evaluated via computer simulations in Section V, and
concluding remarks are presented in Section VI.

Notation: Boldface capital X and lower case x letters denote
matrices and vectors, respectively. XH, Tr(X), and det(X)
denote the Hermitian transpose, trace, and determinant of
matrix X , respectively. CM×N and RM×N denote the set of all
M × N matrices with complex-valued and real-valued entries,
respectively. diag(d1, · · · , dM ) denotes a diagonal matrix with
the diagonal elements given by {d1, · · · , dM }. The circularly
symmetric complex Gaussian (CSCG) distribution with mean
µ and covariance matrix Σ is denoted by CN(µ,Σ); ∼ stands
for “distributed as.” E{·} denotes statistical expectation.

II. SYSTEM MODEL

In this section, we present the system and signal models for
CF-SUDAS.

A. SUDAS Downlink System Model

We consider a system comprising an outdoor BS equipped
with N antennas, a set of M independently operating indoor
CF relays (the CF-SUDAS), and K indoor UEs as shown in
the upper half of Figure 1. The relays are equipped with one
antenna respectively in the licensed and unlicensed frequency
bands. The UEs are equipped with a single antenna operating
in the unlicensed frequency band.

The BS employs multi-carrier downlink transmission with
NF subcarriers and symbol duration T operating in the sub-6
GHz licensed band. The relays receive a sub-6 GHz MIMO
signal from the BS, quantize the received signal amplitudes,
encode and modulate the quantized bits, and transmit the
resulting indoor signal over the unlicensed band to the UEs. To
simplify resource allocation and signal processing, interference
between the relay-UE links is avoided by using an orthogonal
time division multiple access (TDMA) protocol as shown
in the lower half of Figure 1. In this paper, we assume
that the relay-UE links operate in the mmWave band around
60 GHz. Furthermore, for simplicity of implementation, we
restrict the quantization scheme to scalar quantization although
the resource allocation algorithm described herein can be
extended to vector quantization and distributed quantization
using Wyner-Ziv binning [10] in a straightforward manner.

A given UE receives indoor signals from the M relays in
different time slots and decodes them to recover the quantized
version of the MIMO signal received by the relays. Hence,
the relays act as shared virtual antennas for the UEs. The
recovered quantized MIMO signal at the UEs is then used for
MIMO decoding of the BS transmit signal.

B. BS-Relay Links

Let x[i,k] ∈ CNS×1, NS ≤ N, M , denote the data symbol
vector, where E{x[i,k](x[i,k])H} = INS , intended for UE k on
subcarrier i. It is assumed that each subcarrier is allocated to
a single UE. Let P[i,k] ∈ CN×NS denote the precoder matrix
used to map the symbol vector of UE k to the N transmit
antennas, and let H [i] ∈ CM×N denote the MIMO channel
matrix between the BS and the M relays. The received signal at
the M relays on subcarrier i allocated to UE k can be expressed
as

y[i,k] = H [i]P[i,k]x[i,k] + n[i], (1)

where n[i] ∼ CN(0, σ2IM ) is the additive white Gaussian
noise (AWGN) and y[i,k] = [y[i,k]1 , · · · , y

[i,k]
M ]T. The m-th

element, y
[i,k]
m , of y[i,k] denotes the received signal at relay

m.
The M relays independently perform scalar quantization of

the signal amplitudes received on the NF subcarriers. At relay
m, the quantization level for subcarrier i allocated to UE k
is adjusted such that the quantization noise variance q[i,k]m has
a desired value. To aid analysis, the scalar quantization error
at the relays is approximated as AWGN1 [11]. Therefore, the

1The AWGN approximation is also valid for distributed [10] and vector
[11] quantization.
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Fig. 2. Schematic illustration of the CF-SUDAS signal model in (2), where
the quantization process is modelled as AWGN CN(0,Q[i,k]).

quantized MIMO signal ŷ[i,k] on subcarrier i for user k at the
M relays can be expressed as

ŷ[i,k] = H [i]P[i,k]x[i,k] + n[i] + n[i,k]q , (2)

where n[i,k]q ∼ CN(0, Q[i,k]) denotes the quantization noise
modelled as AWGN and ŷ[i,k] = [ŷ[i,k]1 , · · · , ŷ

[i,k]
M ]T. Due

to the independent quantization at the relays, the quanti-
zation noise covariance matrix is diagonal, i.e., Q[i,k] =
diag(q[i,k]1 , · · · , q[i,k]M ). The signal model described above is
schematically illustrated in Figure 2.

If the quantized signal can be communicated error-free from
the M relays to UE k, the UE can perform MIMO decoding
on ŷ[i,k] given in (2).

C. Relay-UE Links

After appropriate coding and modulation of the quantized
signal, the relays transmit the resulting indoor signal to
the UEs. In order to simplify the processing at the UEs,
interference amongst relay-UE links is avoided using an or-
thogonal TDMA protocol as illustrated in the lower half of
Figure 1. Thereby, relay m transmits to UE k using a time
fraction α[m,k] of the BS symbol duration T . For sustained
communication, the time fractions must satisfy the condition∑K

k=1
∑M

m=1 α
[m,k] ≤ 1.

The resource allocation for each indoor relay-UE link is
performed independently by the corresponding relay and is
not considered here. Instead, we assume that the relay-UE
link from relay m to UE k has an achievable rate of C[m,k] for
the BS symbol duration. Hence, in the relaying phase, relay
m transmits to UE k with an effective rate of α[m,k]C[m,k].

For error-free communication from relay m to UE k, the
entropy of the quantized signal at the subcarriers allocated to
UE k must be less than the effective relaying rate. This leads
to the condition

NF∑
i=1

s[i,k]I(ŷ[i,k]m ; y[i,k]m ) ≤ α[m,k]C[m,k], ∀m, k, (3)

which is henceforth referred to as the relay-UE rate con-
straint. Here, I(·; ·) denotes mutual information, and s[i,k] ∈
{0, 1} ∀ i, k are Boolean variables specifying whether or not
subcarrier i is allocated to UE k.

For scalar quantization, the mutual information of the test
channel at relay m for UE k can be expressed as [11]

I(ŷ[i,k]m ; y[i,k]m ) =

log2

(
1 +

h[i]m P[i,k](P[i,k])H(h[i]m )
H + σ2

q[i,k]m

)
, (4)

where h[i]m is the m-th row of the MIMO channel matrix H [i],
i.e., H [i] = [(h[i]1 )

T, · · · , (h[i]M )
T]T.

Furthermore, for the Schur-concave function I(·; ·), we have∑M
m=1 I(ŷ[i,k]m ; y[i,k]m ) ≥ I( ŷ[i,k]; y[i,k]), i.e., independent scalar

quantization at the relays results in redundancy in the indoor
signals. However, due to the large communication bandwidth
in the unlicensed mmWave band used for indoor relaying and
the short indoor communication distance, the achievable rates
C[m,k] on the relay-UE links are typically much higher than the
end-to-end MIMO rates. Therefore, the additional performance
gains possible with more advanced quantization schemes are
expected to be small.

In addition, due to our modelling of the relay-UE commu-
nication channel as finite-rate links with independent resource
allocation, we can accommodate arbitrary unlicensed mmWave
bandwidths and transmission formats for indoor relaying.

III. PROBLEM FORMULATION

In this section, we present the expression for the weighted
sum rate of the CF-SUDAS system and formulate a resource
allocation problem for maximization of the weighted sum rate.

A. Weighted Sum Rate

Assuming error-free communication on the relay-UE links,
UE k can perform MIMO decoding of the quantized signal
given in (2). Hence, the achievable rate for UE k can be
expressed as

Rk =

NF∑
i=1

s[i,k] log2 det
(
IM + H [i]P[i,k](H [i]P[i,k])HT [i,k]

)
, (5)

where T [i,k] = (σ2IM + Q[i,k])−1 = diag(t[i,k]1 , · · · , t[i,k]
M
).

Given the achievable rates of the individual UEs, the
weighted sum rate can be expressed as

Rsum =

K∑
k=1

µkRk, (6)

where the µk’s are fixed weights which can be chosen to ensure
user fairness [12, Sec. 4].

B. Resource Allocation Problem

In this subsection, we define the resource allocation prob-
lem for the system model under consideration. The opti-
mization variables include: the BS precoder matrix P[i,k],
the subcarrier allocation variables s[i,k], the inverse noise
covariance matrix T [i,k], and the TDMA time fractions α[m,k].
Let V = {P[i,k], s[i,k],T [i,k], α[m,k] ∀ i,m, k} denote the set of
optimization variables. The optimal resource allocation V∗ is
the solution to the following problem:

(P) maximize
V

Rsum



s.t. C1:
NF∑
i=1

K∑
k=1

s[i,k]Tr((P[i,k])HP[i,k]) ≤ PB,

C2:
K∑
k=1

M∑
m=1

α[m,k] ≤ 1, C3:
K∑
k=1

s[i,k] ≤ 1∀ i,

C4: ε1 ≤ t[i,k]m ≤

(
1
σ2 − ε1

)
∀ i,m, k,

C5: α[m,k] ≥ 0∀m, k, C6: s[i,k] ∈ {0, 1} ∀ i, k,

C7: cmk ≤ 0∀m, k . (7)

Here, constraint C1 is the BS power constraint that ensures
a maximum transmission power of PB. C2 is the TDMA
constraint on the relays as discussed earlier. C3 ensures that
each subcarrier is allocated at most to one UE. C4 ensures
that the quantization noise variance is positive. In a practical
system, zero and infinite quantization noise variance cannot
be achieved. Therefore, a small positive constant ε1 > 0,
which is chosen based on the computer precision, is used
to ensure that the quantization noise is bounded2. C5 is the
boundary constraint for the time fractions. C6 enforces that the
subcarrier allocation variables are Boolean. C7 is the relay-UE
rate constraint, with cmk defined based on (3), (4) as

cmk =

NF∑
i=1

s[i,k] log2
©­­«1 +

h[i]m P[i,k](P[i,k])Hh[i]m
H + σ2

1
t
[i,k]
m

− σ2

ª®®¬
− α[m,k]C[m,k]. (8)

We note that solving resource allocation problem (P) for CF-
SUDAS requires only the knowledge of the indoor achievable
rates C[m,k] instead of the full CSI on the relay-UE channel
as in [9]. Therefore, the amount of CSI feedback to the BS,
where the resource allocation is performed for the BS-relay
links, is greatly reduced compared to [9].

However, finding a solution to (P) is difficult for three
reasons. First, the objective function Rsum is non-convex.
Second, the combinatorial constraint C6 and the relay-UE rate
constraint C7 are non-convex. Third, there are matrix-valued
optimization variables which increase the overall complexity
of the solution. Therefore, an optimal solution to the problem
may not be possible. Hence, in the following section, we aim
to develop an efficient suboptimal solution to (P).

IV. RESOURCE ALLOCATION

In this section, we present a low complexity suboptimal
solution to (P) and describe the associated resource allocation
algorithm.

A. Problem Simplification

We begin by making the problem tractable by introducing
three simplifications.

1) Enforcing equal quantization noise variance: We restrict
the quantization noise variance at all the relays for user k on
subcarrier i to be identical. This implies t[i,k]m = t[i,k], ∀m and

2Note that the use of ε1 necessitates a minimum achievable rate
C
[m,k]
min , ∀m, k, for (P) to be feasible, which tends to zero as ε1 → 0.

T [i,k] is a scaled identity matrix, i.e., T [i,k] = t[i,k]IM . The
motivation behind this restriction is twofold. First, in small
indoor environments, all relay-UE links typically have a line
of sight, and thus achieve similar data rates which suggests
that using equal quantization noise variances is near optimal.
Second, in the absence of non-convex constraint C7, the use
of equal quantization noise variances is optimal [13, Corollary
2.1], [14].

2) Scalarization of the problem: In order to tackle the
matrix-valued optimization variable P[i,k], we adopt a singular
value decomposition (SVD) based matrix structure which
leads to end-to-end diagonalization, i.e., the MIMO channel is
decomposed into parallel scalar channels thereby simplifying
the objective function. In general, the SVD-based structure is
suboptimal except when constraint C7 is inactive in which
case optimality is ensured by [13, Theorem 3.1]. Let H [i] =
U [i]Λ[i](V [i])H denote the SVD of H [i], where U [i] ∈ CM×M

and V [i] ∈ CN×N are Unitary matrices containing the left
and right singular vectors, respectively. Matrix Λ[i] ∈ RM×N

is a diagonal matrix with main diagonal entries λ[i]1 , · · · , λ
[i]
R ,

where R = min(M, N) and the λ
[i]
r ’s, r = 1, · · · , R, are the

singular values of H [i] ordered as λ[i]1 ≥ λ
[i]
2 ≥ · · · ≥ λ

[i]
R . We

choose the precoder matrix as P[i,k] = Ṽ
[i]
(W [i,k])

1
2 , where

Ṽ
[i]
∈ CN×NS is a matrix containing the NS right singular

vectors corresponding to the NS largest singular values of H [i],
and W [i,k] ∈ RNS×NS = diag(w[i,k]1 , · · · ,w

[i,k]
NS
) is a diagonal

matrix. It can be verified that the combination of enforcing
equal quantization noise variance and the chosen SVD based
matrix structure leads to end-to-end diagonalization. Based on
the above simplifications, constraint C1 can be rewritten as

C1′:
K∑
k=1

NF∑
i=1

NS∑
n=1

s[i,k]w[i,k]n ≤ PB . (9)

3) Time sharing relaxation: In order to tackle the combina-
torial constraints C3, C6, we use the time-sharing relaxation
from [12], [15] where the Boolean allocation variables are
relaxed to real-valued variables. In the presence of convex
constraints, the time-sharing relaxation has zero duality gap
resulting in an optimal subcarrier allocation. However, in the
presence of non-convex constraint C7, strong duality cannot be
guaranteed. Therefore, the time-sharing relaxation may result
in a suboptimal solution. With the time-sharing relaxation,
constraint C3 remains unchanged, however constraint C6 is
replaced by

C6′: ε2 ≤ s[i,k] ≤ 1∀ i, k, (10)

where ε2 > 0 is a small design constant, which is chosen
according to computer precision to avoid the discontinuity of
the objective function given below at s[i,k] = 0.

B. Problem Reformulation
Using the simplifications outlined above, the weighted sum

rate (objective function) can be rewritten as

R′sum =

K∑
k=1

µkR′k, (11)



where

R′k =
NF∑
i=1

NS∑
n=1

s[i,k] log2(1 + (λ
[i]
n )

2 ŵ
[i,k]
n

s[i,k]
t[i,k]). (12)

Here, ŵ[i,k]n = s[i,k]w[i,k]n is an auxiliary variable introduced for
time-sharing. Furthermore, constraint C7 is replaced by

C7′: c′mk ≤ 0∀m, k (13)

with

c′mk =

NF∑
i=1

s[i,k] log2
©­­«1 +

∑NS

n=1 |u
[i]
m,n |

2(λ
[i]
n )

2 ŵ
[i,k]
n

s[i,k]
+ σ2

1
t
[i,k]
m

− σ2

ª®®¬
− α[m,k]C[m,k], (14)

where u[i]m,n is the element in the m-th row and n-th column
of matrix U [i]. Next, constraint C1′ can be expressed in terms
of the auxiliary variable as

C1′′:
K∑
k=1

NF∑
i=1

NS∑
n=1

ŵ
[i,k]
n ≤ PB . (15)

The updated set of optimization variables

W = {ŵ
[i,k]
1 , · · · , ŵ

[i,k]
NS

, s[i,k], t[i,k], α[1,k], · · · , α[M,k] ∀ i, k}

now consists only of scalar variables. With the above changes,
problem (P) simplifies to problem (SP) given below.

(SP) maximize
W

R′sum

subject to C1′′, C2, C3, C4, C5, C6′, C7′. (16)

C. Sequential Quadratic Programming

Despite the above simplifications, the objective function and
constraint C7′ are still non-convex. Therefore, we use SQP
[16] to obtain a locally optimum solution of problem (SP).
In SQP, an associated quadratic program (QP) is iteratively
solved until convergence. The associated QP is constructed
as follows: (a) the objective function R′sum is replaced by its
quadratic approximation, and (b) constraint C7′ is replaced by
its first order linear approximation.

In order to construct the QP, we first determine the quadratic
approximation of the objective function around a pointWl as
follows:

R′′sum =

K∑
k=1

µkR′′k (W,Wl), (17)

where

R′′k (W,Wl) = R′k(Wl) + ∇R′k(Wl)(W −Wl)

+ (W −Wl)
HBk(W −Wl). (18)

Here, ∇R′
k
(Wl) is the gradient of R′

k
(W) evaluated at point

Wl , and Bk is the Hessian matrix of the Lagrangian function
of (SP)3. However, in the presence of non-convex constraint

3We use the Hessian matrix of the Lagrangian function instead of the
Hessian matrix of the objective function as it is well-known that the latter
can cause the SQP to be unbounded, see [16, Sec. 2.2] for details.

C7′, the Hessian matrix is not guaranteed to be negative-
definite. Therefore, we use a negative-definite approximation
of the Hessian matrix. Multiple methods for approximating the
Hessian matrix for non-convex optimization problems have
been studied in [16, Sec. 3.2], [17, Chap. 3]. The methods
offer a trade-off between convergence speed and computational
complexity. In this paper, we use a low-complexity diagonal
negative-definite approximation for the Hessian matrix [16,
Sec. 3.2] by neglecting the off-diagonal terms.

Furthermore, we construct the first order approximation of
constraint C7′ around a point Wl as follows:

C7′(Wl): c′mk(Wl) + ∇c′mk(Wl)(W −Wl) ≤ 0∀m, k, (19)

where ∇c′
mk
(Wl) is the gradient of function c′

mk
(W) evaluated

at Wl .
Using the approximations of the objective function and

constraint C7′(Wl) as given above, the QP, parametrized by
point Wl , is given as follows:

(QP(Wl)) maximize
W

R′′sum

subject to C1′′, C2, C3, C4, C5, C6′, C7′(Wl). (20)

The QP in (20) is solved iteratively with parameter Wl ,
l = 1, 2, 3, · · · , starting from an initial value W0. QPs can
be solved efficiently using numerical solvers. Algorithms for
solving QPs have been studied extensively since the 1950s;
see [18, Chap. 4] for details. Before describing the detailed
iterative resource allocation algorithm, we first provide the
update rule for mapping the relaxed subcarrier allocation
variables to their discrete counterparts.

Let L denote the Lagrangian function of (SP) given by

L =

K∑
k=1

µk

NF∑
i=1

NS∑
n=1

s[i,k] log2(1 + (λ
[i]
n )

2w
[i,k]
n t[i,k])

−

NF∑
i=1

g
[i]
3

©­«
K∑
k=1

s[i,k] − 1ª®¬ −
K∑
k=1

NF∑
i=1

g
[i,k]
6,l

(
−s[i,k] + ε2

)
−

K∑
k=1

NF∑
i=1

g
[i,k]
6,u

(
s[i,k] − 1

)
−

K∑
k=1

M∑
m=1

g
[k]
7,mc′mk

+ terms independent of s[i,k], (21)

where g
[i]
3 , g[i,k]6,l , g[i,k]6,u , g[k]7,m, ∀ i, k,m denote the Lagrangian

variables corresponding to constraint C3, the lower bound
in C6′, the upper bound in C6′, and C7′(Wl), respectively.
For computing the Lagrangian, variable w

[i,k]
n = ŵ

[i,k]
n /s[i,k] is

used instead of the auxiliary variable ŵ
[i,k]
n . Furthermore, let

ψ(i, k) = ∂L
∂s[i,k]

denote the partial derivative of L with respect
to s[i,k] evaluated at a locally optimal point of (SP). Function
ψ(i, k) is referred to as the link quality indicator function [12]
and is a measure of the relative merit of assigning subcarrier i
to UE k. A subcarrier is allocated to the user with the highest
corresponding link quality indicator, i.e.,

s[i,k] ←

{
1 k = arg maxk ψ(i, k)
0 otherwise.

(22)



Algorithm 1 Resource allocation algorithm for CF SUDAS.

1: Choose a feasible initial value for the variables W0 e.g.
as ŵ

[i,k]
n = PB

KNF NS
, s[i,k] = 1/K, t[i,k]m = ε1, α

[m,k] =
1

KM , ∀ i,m, k.
2: for l = 1, 2, 3, · · · do
3: Update the gradient and Hessian of the objective func-

tion and the gradient of the non-convex constraint C7′

based on the point Wl−1.
4: Solve the quadratic program QP(Wl−1) in (20).
5: if |Wl −Wl−1 | < Ntol, the numerical tolerance, then
6: Exit l loop and goto 11.
7: end if
8: Calculate the maximum step size 0 < α ≤ 1 using

bisection search such that the updated solution satisfies
non-convex constraint C7′.

9: Update the solution as Wl = αWl + (1 − α)Wl−1.
10: end for
11: Update the subcarrier allocation variables according to

(22).

D. Resource Allocation Algorithm

The proposed resource allocation algorithm for the CF-
SUDAS system is summarized in Algorithm 1. First, the
algorithm is initialized with a feasible initial value. Within
the iteration loop, in Line 3, the gradient and the Hessian of
the objective function R′sum and the gradient of the non-convex
constraint C7′ are updated according to the solution from the
previous iteration. Next, in Line 4, the QP is solved using
a numerical solver [18] to obtain a solution for the current
iteration. If the previous solution and the current solution are
equal, upto a numerical tolerance Ntol, the algorithm is deemed
to have converged and the iterations are stopped. Otherwise,
in Line 8, a step size α, 0 < α ≤ 1, is determined based on
bisection search such that the updated solution satisfies non-
convex constraint C7′. Next, in Line 9, the current solution is
updated using the determined step size. A stepwise update of
the solution is necessary for convergence due to the presence
of non-convex constraint C7′ [16, Sec. 2.3].

The solution found by Algorithm 1 is a locally optimum
solution of problem (SP) [16], [19, Lemma 1]. For a detailed
discussion of the convergence properties of SQPs, see [16,
Chap. 3,4], [17, Sec. 5.6].

V. SIMULATION RESULTS

In this section, we evaluate the performance of CF-SUDAS
for the given resource allocation algorithm using computer
simulations.

As simulation setup, we consider an outdoor BS with N
transmit antennas, M indoor CF-SUDAS relays, and K indoor
UEs. The outdoor-to-indoor channel is simulated using the
QuaDRiGa framework [20] with non-line-of-sight (NLOS)
paths. For the indoor channel, the mmWave 60 GHz channel

TABLE I
TABLE OF SIMULATION PARAMETERS.

BS-Relay, Sub 6 GHz
N 16
Antenna Gain 18 dBi
NF 1200
Subcarrier bandwidth 15 kHz
Bandwidth 18 MHz
M 16
K 2
BS-room distance 50 m
Relay-UE, 60 GHz
Number of subcarriers 336
Subcarrier bandwidth 5.15625 MHz
Effective bandwidth 1.7325 GHz
Max. transmit power 23 dBm
Conference room size 10 m x 10 m
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Fig. 3. Convergence of the proposed resource allocation algorithm (Algorithm
1) as a function of the number of iterations.

model from [21] with the ‘conference room’ setting is used.
The relays are uniformly distributed on the ceiling of the room,
and the UEs are located randomly within the indoor environ-
ment. The achievable rates on the relay-UE links are calculated
using single-user waterfilling on the indoor mmWave channel.
The system parameters are chosen to conform to the 16x16
Long Term Evolution (LTE) Advanced Pro and Wireless Gi-
gabit Alliance (WiGiG) standards for the BS-relay and relay-
UE links, respectively. The detailed simulation parameters are
given in Table I.

Figure 3 shows the convergence behaviour of Algorithm
1. At low-to-moderate transmit powers, e.g., PB = 34 dBm,
the relay-UE rate constraint is not active, which has a positive
effect on the speed of convergence. The convergence is slower
at higher transmit powers, e.g., PB = 46 dBm, when constraint
C7 is active. Nevertheless, in both cases, we observe that the
algorithm converges within 50 iterations to the maximum sum
rate value. Therefore, in the following, we set the number of
iterations to 50.

Figure 4 shows the maximum achievable sum rate as a
function of the BS transmit power. The curve labelled ‘Upper
Bound’ is the max-flow-min-cut performance upper bound [22,
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Fig. 4. Performances of CF-SUDAS with the proposed resource allocation
algorithm and the baseline AF-SUDAS scheme with joint processing [9].

Theorem 15.10.1] for the SUDAS system. The curve labelled
‘Baseline 16x2’ is obtained for UEs equipped with two sub-
6 GHz antennas and without SUDAS. We observe that the
proposed algorithm closely approaches the performance upper
bound. Furthermore, the proposed algorithm performs better
than the baseline AF-SUDAS with joint relay processing [9]
even though the proposed algorithm uses independently oper-
ating relays which has significant advantages in terms of com-
plexity and signalling overhead. The improved performance of
the proposed scheme is due to the exploitation of the entire
indoor capacity for relaying. In comparison, the baseline AF-
SUDAS scheme can use only a small amount of the available
mmWave bandwidth. We note that the performance of the
baseline AF-SUDAS scheme could be improved by adding
more relays, thereby increasing the number of relayed MIMO
signals. However, this imposes an even larger complexity on
the UEs for MIMO decoding. The baseline scheme without
SUDAS has a poor performance despite the two receive
antennas at the UE as it does not benefit from the virtual
MIMO gain.

VI. CONCLUSION

In this paper, we considered resource allocation for an
outdoor-to-indoor SUDAS employing multiple independently
operating CF relays which utilize both licensed and unli-
censed frequency bands to enhance indoor data throughput.
We formulated a non-convex matrix-valued resource allocation
problem for maximization of the weighted sum rate. Next,
we simplified the non-convex problem to provide a low-
complexity suboptimal resource allocation algorithm based on
SQP. Computer simulations revealed that the algorithm has
good convergence properties. Furthermore, our simulations
also confirmed that the proposed algorithm outperforms the
baseline AF-SUDAS scheme from [9] as it can take full
advantage of the high achievable rates of the indoor relay-UE
links.
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